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1. Summary 
 

The technical goal of this three year project was to extend prior SynDCode software 

research and development to incorporate superimposed coding, a classical information theoretic 

approach, to encode, decode and translate the input and output of DNA computing operations. 

Large collections of carefully constructed single stranded DNA sequences, called a DNA Library, 

can be algorithmically filtered to encode solutions to mathematical questions. To date, there has 

been no simple way to decode these solutions.  One possible decoding method is to further 

augment or embed the original encoded DNA library strands with synthetic reading strands made 

from the blueprints of classical superimposed codes.  This can make the DNA output readable 

without complicated chemical separation or isolation protocols. Coupled with superimposed 

encoding, the readout method can be more efficient, accurate, and increase the feasibility of using 

DNA as a computing and storage medium. 

 

The project was cancelled after one year. The second and third years were incorporated 

into a new, longer project so only partial results were obtained for the original project.  A method 

of distinguishing DNA targets was constructed in the first year.  This report discusses the non-

unique probe method developed for distinguishing multiple targets.  This new approach has its 

roots in the theory of random superimposed codes. It essentially considers the targets as the 

columns and the probes as rows in a random superimposed binary matrix.  In this way 

superimposed hybridization signatures from multiple targets can be distinguished by classical 

information-theoretic superimposed/d-disjunct decoding methods. 
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2. Introduction 
 
 

There is a need to efficiently access the information that is locked inside the DNA output 

of biomolecular computing.  We used the idea of group testing and superimposed codes to more 

efficiently access encoded information in synthetic DNA.  

 

 Suppose we have a finite ground set or population containing elements that can be 

uniquely characterized as positive or negative.  We refer to the collection of positive elements, 

which is initially unknown, as the positive subset P.  In the abstract group testing problem, P must 

be identified by performing 0, 1 tests on subsets or pools of the population.  A pool is said to be 

positive (1) if the test result indicates that a member of P is in that pool; the pool is said to be 

negative (0) if test result indicates otherwise.  A deterministic pooling design algorithm is a 

collection of pools along with a (worst case) method that identifies the positive subset in a 

population. 

 

Suppose that in a population of size t, the positive subset P has at most d elements.  Then 

a n × t  d-disjunct matrix M gives a deterministic pooling design and algorithm in the following 

way.  Let c(i))(  where 1 ≤ i ≤ n be a column (vector) of M.  Identifying the columns of M with 

the population, then the rows of M give the pools in the obvious way.  That is, a column c(i))(  is 

in the pool determined by the ri  (the row of M with index i) if and only if the (column) entry 

c(i) = 1.  The information gained by testing these pools is organized as follows.  Suppose that the 

positive subset is Sjj ))}i(c{(P ∈= .  By testing each pool (row) ri , we define an output vector 

))i(o(  by setting o(i) = 1 if pool ri  is positive and o(i) = 0 if it is negative.  Clearly (given that 

the tests are error-free) for 1 ≤ i ≤ n, o(i) = 1 if and only if there is a P))i(c( j ∈  with c j(i)= 1. 

Thus o=∨P. The output vector o is used to identify P because P = {c ∈M : c ≤ o}. This follows 

because for each c0 ∉P there is a row of M that separates the designated set )P,c( 0 .   See [7]. 

 

 The DNA design tool SynDCode provides the means to create collections of synthetic 

DNA strands with controlled properties such as resistance to crosshybridization. The user has the 

ability to verify the properties of an existing DNA code, expand a given DNA code or create an 

entirely new DNA code. The models built into SynDCode allow for the specification of 
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thermodynamic properties of the generated DNA code and for collections of concatenated 

combinations of strands taken from the generated code. SynDCode can be used to construct DNA 

codes that do not adversely interact with functional DNA strands external to the code, e.g., 

priming sites, and it can construct codes that contain important motifs, e.g., restriction sites. 

 

 The following sections detail how SynDCode is used to instantiate a d-disjunct matrix M 

in a DNA array such as that depicted in Section 4.1. 
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3. Methods, Assumptions, Procedures 
 
3.1 DNA Probe Codes  
 

Single strands of DNA are, abstractly,  T)G,C,(A,  -quaternary sequences, with the four 

letters denoting the respective nucleic acids. In this report, when we write DNA molecules 

without indicating the direction, it is assumed that the direction is 35 ′→′ . A DNA probe code P  

is a collection of single stranded DNA, whose goal is to correctly distinguish between strands of 

target DNA whose composition, or sequence, are known. The greatest energy of duplex formation 

is obtained when two sequences are reverse complements of one another and the DNA duplex 

formed is a Watson-Crick (WC) duplex. However, there are many instances when the formation 

of non-WC duplexes is energetically favorable.  In this report, a non-WC duplex is referred to as 

a crosshybridized (CH) duplex. All WC and CH duplexes whose formations are energetically 

favorable are referred to as hybridized (H) duplexes.  All potential CH duplexes whose formations 

are not energetically favorable are referred to as non-hybridized (NH) duplexes, and all potential 

CH duplexes whose formations may or not be energetically favorable are referred to as unknown 

(U) duplexes. See [3]-[6], [8], [9]. 

 

A key difference between DNA probe codes and traditional DNA codes is that probe 

codes have hybridization potential with the target strands but not with other probes.  This is due 

to the probes being fixed to a substrate instead of having the ability to wander through a fluidic 

solution.  A good probe code is said to contain H and NH duplexes while being completely free 

of any U duplexes.  Note that this does not imply that all CH duplexes must be prevented from 

forming, but rather that the CH duplexes must be stable enough to guarantee that they will form. 

A probe code with this property is said to have high binding specificity. High binding specificity 

is akin to high signal-to-noise ratio. 

 
3.2 TargetProbe 
 

TargetProbe uses SynDCode DNA code generation to design probes to increase channel 

capacity and reduce noise at the readout phase of DNA computation. TargetProbe selects a subset 

of all potential probes by ensuring that every probe adheres to precise hybridization criteria.  The 

main difference in code design with TargetProbe from our previous work is that cross-

hybridization is not entirely removed, but rather controlled.  A probe may be permitted to 

hybridize with other targets, as well as where it coalesces perfectly, so long as a probe does not 

hybridize with more than hmax targets.  Additionally, a probe may be required to hybridize with at 
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least hmin targets in order to increase the probability of producing a unique signal.  Such cross-

hybridizations allow codewords that would have been rejected in previous work to still operate in 

DNA computation.  Thus, we are able to increase signal output and information space without 

significantly increasing noise. 

 

Each target, Ti, consists of L-n+1 potential code probes, p, and target sites, t, where L is 

the length of the target and n is the desired length of each probe.  Each probe is checked against 

every potential cross-hybridizing t of every Ti, or until a cross-hybridizing site is found within Ti.  

 

Each probe can be classified (C) as H, NH, or U with every Ti.  Any probe that has at 

least hmin H-target classifications, at most hmax H-target classifications and zero U-target 

classifications will be accepted into the DNA probe code.  On the contrary, any probe that has 

less than hmin H-target classifications, more than hmax H-target classifications or at least one U-

target classification will be rejected from the DNA probe code.   

 

3.2.1 Localized 2-stem Measure of a DNA TargetProbe Duplex 
 

The notation from previous reports and [1],[9] are used throughout.  A natural 

simplification for formulating binding specificity is to base it upon the maximum number of WC 

(inter-strand, non-covalent hydrogen) base pair bonds between complementary letter pairs which 

may be formed between two oppositely directed strands.  Let  yx :   denote the duplex formed 

between  x   and  y   when  y   is the WC complement of y .  Then an upper bound on the 

maximum number of base pair bonds that can form in the  yx :   duplex is,  ),(1 yxΩψ , the 

maximum length of a common subsequence to  x   and  y  .  This doesn't mean that  x   and  y   

will form  d   base pair bonds in a hybridization assay; it just says they could never form more 

than  d   base pair bonds.  In [1], this measure was denoted by  ),(1 yxΩψ   where  Ω   is the 

constant function  1 .  

 

If the binding specificity were solely dependent on the number of base pair bonds, then 

DNA codes constructed by using ),(1 yxΩψ  as the constraint could be used in hybridization 

assays with assured high binding specificity.  However, the state of the art model of DNA duplex 
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thermodynamics is the Nearest Neighbor Model (NN). See [2]-[5], [10], [11], [13]. In the NN 

model, thermodynamic (e.g., free energy) values are assigned to loops rather than base pairs.  

Consider two oppositely directed DNA strands  

′′

′

=

′=

5,...,,...,,3

3,...,,...,,5

21

21

nj

ni

yyyyy

xxxxx
 

where  jy   denotes the complement to base  jy  .  A secondary structure of the DNA duplex  

yx :   is a sequence of pairs of complementary bases  ( )),(
rr ji yx   where  )(

rix   and  )(
rjy   

are subsequences of  x   and  y   respectively.  Clearly the duplex  yx :   can have many 

secondary structures. An important issue is to understand which secondary structure is the most 

energetically favorable. The duplex  yx :   can have a t-stem if and only if there are strings  

)(, npβα   with  ],[],1,[ itjjtii −+=−+= βα    with  βα yx =   where  

.3,...,,5 21 ′′= nyyyy   A maximal t-stem is one that is not properly contained in another larger t'-

stem. Every maximal t-stem contains )0,1max( +− jt   j-stems. In [1] an efficient means of 

computing,  ),,(2 yxΩψ   the maximum number of the common 2-stems that can occur taken over 

all possible secondary structures for the  yx :   duplex is given. In [2], ),(2 yxΩψ  and its method 

of computation has been shown well to correlate well with more complex duplex prediction 

algorithms when comparing sequences of equal lengths.   

 

Since the target strands are meant to be much larger than the probe strands, the ),(2 yxΩψ  

calculation produces a large overestimate of the duplex stability between a probe and a target.  

Thus, a local alignment algorithm was adopted where internal gaps, or unbound locations within 

an alignment, are penalized against the alignment score.  Figure 1 shows an example of the 

penalization of a 3-base gap. 
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Figure 1: Gap penalty example where the alignment would be scored as 
AC(TG) + CG(GC) – (C) – (T) – (A) + AT(TA) + TC(AG).  If the gap 
penalty was 1, the alignment score would be 1.  If there was no penalty, 
the alignment score would be 4. 
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4. Results, Discussion 
 
4.1 TargetProbe Inputs 
 
4.1.1 General Inputs 

 

The TargetProbe module is instrumental in retrieving the encoded information contained 

in an existing DNA code or a more simple set of DNA strands.  A SynDCode generated DNA 

code whose information is encoded via concatenation could be decoded much more efficiently by 

utilizing the TargetProbe module while also reducing and optimizing noise.  TargetProbe 

parameters consist of two main types. The first type, called Probe Constraints, refer to the 

requirements during the selection of a potentially acceptable probe.  These constraints are 

provided to ensure that the user’s requirements for probe selection are met based on the Watson-

Crick probe locality within a target.  The second type, called Hybridization Constraints, refer to 

the hybridization limitations placed on a probe that was already deemed potentially acceptable 

based on the Probe Constraints. Therefore, a probe must satisfy the Probe Constraints first, and 

then satisfy the Hybridization Constraints before it is finally considered a qualified accepted 

probe.  These constraints ensure that hybridization of the accepted probes will be predicted and 

controlled to the discretion of the user.  Introducing stricter constraints will result in smaller sets 

of probes reducing noise and readout capacity, but overall signal output as well as control of 

reactions will be inherently more predictable.  Following is a description of the individual 

parameters contained within each main type of constraint. 

                                                                                                                                                                                             

Targets File 

 

This standard text file is user defined and contains all the targets for which the user wants 

to find probes.  In effect it is the encoded information that the user wishes to retrieve.  The user 

inputs each target as a single sequence on a single line. 

 

4.1.2 Probe Constraints 

 

Probe Length 

 

The probe length variable sets the length, in bases, that the user would like the probes to 

be.   
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Require Non-overlapping Probes 

 

This option can be turned on or off and distinguishes whether or not a probe can overlap 

another previously accepted probe from the target it came from. 

 

Require Unique Signal 

 

This option can be turned on or off and determines whether or not a probe can be 

accepted if it produces the identical hybridization signal as another previously accepted probe 

against the targets. 

 

Maximum Probes from a Target 

 

This constraint sets an upper bound on the maximum number of probes that can be 

accepted from a single target.   

 

4.1.3 Hybridization Constraints 

 

Hybridization Score Threshold 

 

The hybridization score threshold sets a lower bound on the score of the localized 2-stem 

measure that must exist between a probe and a target in order to define the duplex as hybridizing 

(H). 

 

Non-Hybridization Score Threshold 

 

The Non-hybridizing score threshold sets an upper bound on the score of the localized 2-

stem measure that can exist between a probe and a target in order to define the duplex as non-

hybridizing (NH).  Any duplex that cannot be defined as H or NH is called unknown (U) and will 

be immediately rejected. 
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Non-Hybridization Score Probe Threshold 

 

The Non-hybridizing score probe threshold sets an upper bound on the score of the 

localized 2-stem measure that can exist between any two accepted probes.  This threshold helps 

ensure that all the probes are unique enough from each other.  Unique probes are more likely to 

produce distinct signals. 

 

Maximum Substring 

 

The maximum substring sets an upper bound on the number of consecutive 2-stems that 

can exist between two probes or between a probe and a target before immediately calling the 

duplex hybridizing. 

 

Minimum Hybridizations 

 

The minimum number of hybridizations constraint sets a lower bound on the number of 

targets that an acceptable probe must hybridize with. 

 

Maximum Hybridizations 

 

The maximum number of hybridizations constraint sets an upper bound on the number of 

targets that an acceptable probe can hybridize with. 

 

Gap Penalty 

 

The gap penalty subtracts a value from an alignment score at the introduction or 

elongation of a gap.  The resultant score reflects a local alignment score between a probe and a 

longer target. 

 

4.1.4 Example of Output 

 

Figure 2 is a hypothetical example of the TargetProbe interaction matrix. A 1 indicates 

the probe (row) hybridizes with the target (column), a 0 indicates non-hybridization, and a 2 

indicates an unknown hybridization.  For this example, consider that the minimum number of 
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hybridizations (hmin) was set to three and the maximum number of hybridizations (hmax) was set to 

four. 

 
 

Probe    Ti         
 T1 T2 T3 T4 T5 T6 T7  0’s 1’s 2’s OK 

T1P1 1 0 2 1 1 0 0  3 3 1 N 
T1P2 1 0 1 0 1 1 1  2 5 0 N 
T1P3 1 0 0 1 0 0 0  5 2 0 N 
T1P4 1 0 1 0 0 0 1  4 3 0 Y 
T2P1 1 1 0 2 0 1 2  2 3 2 N 
T2P2 0 1 0 1 1 1 0  3 4 0 Y 
T2P3 2 1 1 0 2 2 0  2 2 3 N 
T2P4 2 1 1 2 0 1 1  1 4 2 N 
T3P1 0 0 1 0 0 0 0  6 1 0 N 
T3P2 0 0 1 0 2 1 0  4 2 1 N 
T3P3 0 1 1 0 1 0 0  3 4 0 Y 
T3P4 1 1 1 0 1 1 1  1 6 0 N 
T4P1 1 0 0 1 1 1 0  3 4 0 Y 
T4P2 0 2 0 1 2 1 0  3 2 2 N 
T4P3 1 0 0 1 2 2 1  2 3 2 N 
T4P4 0 1 0 1 1 1 0  3 4 0 Y 
T5P1 0 1 2 2 1 0 0  3 2 2 N 
T5P2 0 0 0 0 1 0 0  6 1 0 N 
T5P3 0 1 1 2 1 0 1  2 4 1 N 
T5P4 1 1 0 0 1 0 1  3 4 0 Y 
T6P1 1 1 2 2 0 1 0  2 3 2 N 
T6P2 1 0 0 1 2 1 2  2 3 2 N 
T6P3 0 1 1 1 2 1 1  1 5 1 N 
T6P4 1 0 1 0 0 1 1  3 4 0 Y 
T7P1 1 2 2 2 0 2 1  1 2 4 N 
T7P2 1 1 1 1 1 1 1  0 7 0 N 
T7P3 0 1 1 1 1 2 1  1 5 1 N 
T7P4 1 1 0 0 0 1 1  3 4 0 Y 

Figure 2: TargetProbe interaction matrix and summary of output in blue.  
(‘Y’ in the ‘OK’ column means the probe was accepted) 

 
There are three ways in which a probe was rejected and each is exhibited in one of the 

first three potential probes T1P1, T1P2, and T1P3. The first probe from the first target, T1P1, was 

rejected because there is an unknown duplex classification with the third target, T3. T1P2 was 

rejected because it would hybridize with five targets, which is greater than the maximum 

allowable number of hybridizations (hmax) which was set to four. T1P3 was rejected because it 

would only hybridize with two targets, which is less than the minimum allowable number of 

hybridizations (hmin) which was set to three. 

 

There is only one way in which a probe can be accepted and is exhibited in the fourth 

potential probe, T1P4. T1P4 was accepted because there are zero unknown duplex classifications 

and three targets that it would hybridize with which is greater than or equal to hmin and less than 

or equal to hmax. Although not demonstrated in this example, a probe which satisfies this 

constraint can still be rejected for three reasons. The first is that a probe may not satisfy the “Non-
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Hybridizing Probe Threshold” which prevents probes from being too similar with each other. The 

second is that the “Require Non-overlapping Probes” option may be turned on and a new probe 

may overlap a previously accepted probe. In this case, the new probe will be rejected. The last 

reason is that the “Require Unique Signal” option may be turned on and a new probe may 

produce the same signal as a previously accepted probe. In the example above, the accepted probe 

T4P4 would have been rejected if this option would have been turned on because it produces the 

same signal as the previously accepted probe T2P2. Both of these targets would hybridize with T2, 

T4, T5 and T6 and would not hybridize with T1, T3 or T7 which implies that including both probes 

in an array would not help distinguish which targets could be present. 

 

The fundamental goal is to produce a probe code which produces a distinct signal for 

each possible present target.  In this example, the goal is accomplished.  This can be seen by only 

including the accepted probes in the interaction matrix and considering the output as a binary 

number, (Figure 3).  The TargetProbe program produces a similar output Note: Probe T4P4 is not 

included because of its non-unique output signal. 

 
Ti    Probe    
 T1P4 T2P2 T3P3 T4P1 T5P4 T6P4 T7P4 

T1 1 0 0 1 1 1 1 
T2 0 1 1 0 1 0 1 
T3 1 0 1 0 0 1 0 
T4 0 1 0 1 0 0 0 
T5 0 1 1 1 1 0 0 
T6 0 1 0 1 0 1 1 
T7 1 0 0 0 1 1 1 

Figure 3: Target versus accepted probe interaction matrix. This 
demonstrates that each target presented to our set of probes will 
produce a distinct signal. 

 
 

The combination of every target producing a unique signal, molecules such as SYBR 

Green I dye fluorescing when a DNA molecule is hybridized, and DNA microarrays having the 

ability to fix the locations of the probe DNA make our TargetProbe code design algorithm a 

practical solution for fuzzy searching of associative memories using DNA as a storage device.  

Figure 4 illustrates the microarray readout from each target if it was present in the microarray 

solution. 
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Figure 4: DNA microarray output for the presence of each target 
(columns T1 – T7) where a green spot signals hybridization and a 
black spot indicates no hybridization is present. 

 
4.2 Real-World Application using Meiobenthos Genomic DNA 
 

To test our DNA probe code generation techniques, a set of 353 DNA sequences from 

different Meiobenthos organisms, related by a phylogenetic tree, was chosen. These sequences 

were chosen due to the dataset being composed of very similar sequence structures and being 

readily available, [12]. This proved to be a daunting, but extremely thorough, test of viability of 

theoretic implementation. Clearly, the greater the similarity between the sequences of the targets, 

the more difficult the task becomes of properly distinguishing an individual target. Given this set 

of targets, our goal was to stringently constrain our hybridization criteria in order to establish the 

effectiveness of our probe code design algorithm. Thus, we were not focused on ensuring that all 

targets could be uniquely identified, but rather that the targets we say can be identified most 

certainly will be. 

 

Test 1:  

 Probe length = 30 

 Minimum number of hybridizations = 1 

 No constraint of Maximum number of hybridizations (i.e., hmax = 353) 

 Hybridization Score Threshold = 27 

 Non-Hybridization Score Threshold = 19 

 Non-Hybridization Score Probe Threshold = 3 
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 Maximum Substring = 11 

 Gap Penalty = 1 

  

 Found 516 unique probe signals producing 260 unique target signals. The number of 

probes could be reduced without reducing the number of unique target signals. 

 

Test 2: 

 Probe length = 20 

 Minimum number of hybridizations = 1 

 No constraint of Maximum number of hybridizations (i.e., hmax = 353) 

 Hybridization Score Threshold = 16 

 Non-Hybridization Score Threshold = 12 

 Non-Hybridization Score Probe Threshold = 3 

 Maximum Substring = 9 

 Gap Penalty = 1 

 

 Found 486 unique probe signals producing 283 unique target signals. The number of 

probes could be reduced without reducing the number of unique target signals. 
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5. Conclusions 
 

We developed several concrete algorithms that help us to define what a good probe set is 

while employing this approach.  Generally when we talk about our DNA readout phase we are 

referring to the decision process of deciding whether a DNA strand is hybridized with another 

strand in a duplex or remained single stranded during the hybridization cycle of DNA computing.  

We commonly use DNA probe sequences coated in fluorescent dye on a DNA microarray during 

the readout phase where the dye on DNA in a duplex fluorescence’s several times brighter.   This 

method has been shown to be sensitive, fast and simple and is our laboratory practice of choice. 

 

We have designed a group testing approach which will always work as long as the probe 

collection you chose has the ability to identify each target individually.  Group testing is an 

extremely useful tool because it eliminates the need to generate unique probes for each target.  In 

other words, the same probe can hybridize with multiple targets as long as the target has a unique 

probe signal.  Thus, we have implemented a fully functional probe design package where 

hybridization and non-hybridization of probes can be thoroughly understood. 

 

We have begun improving the complexity of computing whether a probe will or will not 

hybridize with a target. This included investigating the feasibility of using fast bit-vector 

algorithms to determine probe reliability.  We believe these bit-vector algorithms show extreme 

potential in probe design and we will continue to investigate these approaches.  Figure 5 shows 

actual time profiles which compare the old classic dynamic programming approach to the new 

bit-vector approach.   

As the figure indicates, the real-time speed of the bit-vector (column labeled BV) is 

significant over the speed of the old dynamic programming algorithm (column labeled DP), and 

especially as the length of m is increased.  We plan to continue this line of research in the next 

project.   



     16

 

m n Avg. BV Avg. DP 
13 100 15.90 133.42 
13 200 28.11 233.94 
13 400 47.51 420.98 
13 800 89.22 869.35 
13 1600 158.00 1796.00 
13 3200 318.00 3664.00 
13 6400 620.00 7142.00 
     

26 100 25.50 212.34 
26 200 36.31 441.08 
26 400 52.81 920.96 
26 800 88.00 1922.00 
26 1600 172.00 3586.00 
26 3200 326.00 7102.00 
26 6400 656.00 14118.00
     

52 100 37.11 506.49 
52 200 50.60 1013.33 
52 400 54.00 2154.00 
52 800 114.00 3896.00 
52 1600 196.00 7432.00 
52 3200 344.00 15342.00
52 6400 528.20 30862.00

 

Figure 5: Comparison of algorithms.  Each test was run on 5 pairs of random sequences 
each tested 20,000 times.  The times are displayed in us/call. 
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